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1. Introduction 
 
The objective of this effort was to leverage from and extend the agile computing approach and 
metaphor to improve Air Force information management infrastructures for dynamic and tactical 
environments. Four specific areas of research were: (a) Dynamic service instantiation, relocation, 
and optimization, (b) Dynamic service discovery (c) Proactive service link maintenance, and (d) 
Efficient data dissemination and predicate processing in dynamic networks. 
 
This document is the final technical report for the project, which began in March 2006 and ended 
in December 2007. Section 2 presents background information on the notion of Agile 
Computing. Section 3 presents the overall architecture for the agile computing middleware. 
Section 4 presents details about each of the four specific research areas targeted by this effort. 
Section 5 presents some potential future directions to continue this research. Finally, the 
appendix contains papers that resulted from the research sponsored as part of this project. 
 
2. Background 
 
Operational and tactical military environments are composed of mobile nodes and dynamic 
situations resulting in a high degree of uncertainty. Communication links are often based on ad-
hoc networks resulting in intermittent reachability, variable latency, and low bandwidth. As 
nodes enter and leave the environment, the set of available data sources and services within the 
Community of Interest change continuously. Information management infrastructures must be 
designed to operate effectively in such environments in order to support the vision for net-centric 
operations. 
 
2.1. Overview of Agile Computing 
 
Agile computing is an innovative metaphor for distributed computing systems and prescribes a 
new approach to their design and implementation. This report describes the overall agile 
computing metaphor as well as one concrete realization through a middleware infrastructure. 

Agile computing may be defined as opportunistically discovering, manipulating, and exploiting 
available computing and communication resources in order to improve capability, performance, 
efficiency, fault-tolerance, and survivability. The term agile is used to highlight the desire to 
both quickly react to changes in the environment as well as to take advantage of transient 
resources only available for short periods of time. Agile computing thrives in the presence of 
highly dynamic environments and resources, where nodes are constantly being added, removed, 
and moved, resulting in intermittent availability of resources and changes in network 
reachability, bandwidth, and latency. 

From a high-level perspective, the goal of agile computing is to facilitate resource sharing among 
distributed computing systems. At this broad level of description, agile computing overlaps with 
several other areas of research including distributed processing, peer-to-peer resource sharing, 
grid computing, and cluster computing. The following factors constrain the goals of agile 
computing and differentiate it from the other areas of research. 
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Transient Resources: The resources in the target environment for agile computing are 
expected to be highly transient. Indeed, one of the performance metrics for agile computing 
is defined as a function of the minimum length of time that a resource must be available in 
order to be utilized productively. The expectation is to support environments where resources 
are available on the order of seconds or minutes, as opposed to hours, days, or longer. 
Therefore, agile computing differs from grid computing and cluster computing, which targets 
environments where resources are more stable. 

Limited Communications: The networks used to interconnect resources in the target 
environment are expected to be wireless and ad-hoc. The implication for agile computing is 
that the middleware must be able to support and operate in low-bandwidth, high and variable 
latency, and unreliable networks. Again, this differentiates agile computing from grid 
computing and cluster computing, where the network links tend to be reliable and high in 
performance. 

Opportunistic Resource Exploitation: Another goal of agile computing is to take advantage of 
unexpected resources that happen to be available. In particular, the goal is to take advantage 
of resources that were not originally intended to be tasked, but happen to have spare capacity 
for transient periods of time. Some peer-to-peer systems provide the same capabilities. Agile 
computing extends this capability to also be proactive and manipulate the resources in the 
environment to satisfy the requirements. Manipulation can include physically moving 
resources (for example, robots or other autonomous vehicles) in order to provide 
communications or processing capabilities where required. These additional resources may 
be uncommitted resources assigned for use by the middleware or other resources which can 
be manipulated without interfering with their original task assignments. This aspect 
differentiates agile computing from other peer-to-peer systems as well as from grid 
computing and cluster computing. 

The following subsection describes a scenario that can benefit from the concepts of agile 
computing. They also describe the target environments and conditions under which the agile 
computing middleware needs to operate. 

2.2. Agile Computing for Military Information Networks 
 
The concept of agile computing and the agile computing middleware were originally conceived 
to address the challenges presented by military information networks. Figure 1 below shows one 
conceptual view of a tactical military environment. 

From the perspective of agile computing, there are several interesting characteristics in such an 
environment. As observed in the figure, the environment is expected to be chaotic, with a wide 
range of platforms operating concurrently. Platforms include satellites, manned aircraft, 
unammed aircraft (UAVs), tanks and other manned ground vehicles, robotic vehicles, ships at 
sea, unmanned underwater vehicles (UUVs), unattended ground sensors (UGSs), and 
dismounted solders. All of these platforms are interconnected through a variety of networking 
mechanisms ranging from acoustic modems to RF (Radio Frequency) modems to wireless ad-
hoc networks to long-range wireless links. For example, a set of ground sensors may establish an 
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ad-hoc network among the sensors, with one of the nodes acting as a gateway that interconnects 
with the rest of the network hierarchy through a modified 802.11 interface.  

 
Figure 1: A Conceptual View of a Tactical Military Environment 

 (Courtesy of Dave Gunning at DARPA) 

 
The platforms (henceforth referred to as resources) vary greatly in their range of capabilities and 
in their roles. For example, some resources, such as ground sensors, are battery powered and 
have severe constraints on power utilization due to the requirement that they continue to operate 
for some desired duration of time after deployment. Resources vary in their processing 
capabilities, memory and storage capabilities, communication capabilities, and display 
capabilities. Some resources have dedicated roles (for example, the fire control computer in a 
tank) while others are general purpose computers (rack mounted servers in a HMMVW that 
provide services such as a GIS database or a directory service). 

New resources may be dynamically added or removed from the environment. For example, a 
new set of sensors may be dropped into the battlefield environment thereby increasing the 
number of available resources. Resource attrition is to be expected due to enemy attacks and 
usage of consumable resources (such as a ground sensor running out of battery power). Also, 
since many resources such as aircraft, UAVs, and other vehicles are mobile, they may enter and 
leave the environment at arbitrary times. From the perspective of agile computing, a resource 
enters the environment when communications can be established to the resource and the resource 
leaves when communications is no longer possible. Note that temporary disconnection of a 
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resource from the network due to unreliable or disrupted communications is also possible and 
may need to be differentiated from a resource entering and leaving the environment. 

In a battlefield environment, there are typically multiple parallel activities overlapping in space 
and time. For example, while the Army may have forces operating on the ground, the Air Force 
may have aircraft operating in the air, either in support of the Army or on other parallel missions. 
In addition to multiple forces, there are likely to be coalition forces operating in cooperation. In 
urban environments, other groups such as the Red Cross may be active as well. These different 
groups bring different sets of resources to bear within the same environment. From the 
perspective of a mission, the result of such parallel activities is that other unexpected resources 
might become available during the course of the mission. For example, an Army soldier wanting 
to get an image of an area on the other side of a hill might be able to tap into a camera on an Air 
Force plane that just happens to be over the area of interest. Being able to opportunistically take 
advantage of such resources can help provide new capabilities as well as offset the attrition of 
resources that is almost certain to occur. 

Given the coalition nature of the majority of military operations, resources in the battlefield are 
typically owned by different stakeholders. Even in single-nation operations, there are likely to be 
different services or branches of the military involved. The implication is that there are 
effectively multiple chains of command and administrative domains leading to constraints on 
resource sharing between the stakeholders. These different stakeholders might be collaborating 
to perform a single mission or may be operating in parallel as discussed above. In the former 
case, resource sharing agreements would already be in place while in the latter case, resource 
sharing would have to be spontaneous. To facilitate such sharing, the system should allow 
constraints on resource utilization across domains to be specified ahead of time and let resources 
be opportunistically tasked within those constraints. 

The communications infrastructure is wireless and consists of a number of different technologies 
– microwave, 802.11, and software programmable radios such as JTRS. The networking 
technology is likely to be ad-hoc in order to not require a significant effort to deploy and setup a 
communications infrastructure. Such wireless ad-hoc networks provide low-bandwidth, high-
latency links. Moreover, these links are unreliable as devices are moving and going in and out of 
communications range with respect to each other. Under some circumstances, it is also important 
to minimize data transmission in order to conserve battery power or to operate in a clandestine 
manner. 

There are a wide range of devices operating within the battlefield environment, ranging from 
unattended sensors with small embedded computers to platforms with custom computer systems 
to standard rack-mounted servers in HMMWVs. These devices vary greatly in their CPU 
architectures, hardware capabilities, available power, and size. A UAV or a tank may have 
computers with standard x86 compatible processors, plenty of memory and storage, a high-
bandwidth network link, and no constraint in terms of battery power. On the other hand, an 
embedded computer on a sensor may have a custom processor, limited memory, no secondary 
storage, a low-bandwidth network link, and be constrained by the limited battery capacity. 
 
Within the battlefield environment, the producers of information are typically sensors 
(unattended ground sensors, cameras on robots and UAVs, etc.) and soldiers operating in the 
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field. The consumers of information range from dismounted soldiers to pilots to commanders at 
various levels of the hierarchy. Some of the endpoints involved in this information flow are weak 
resources (in terms of computational power, battery power, storage, and communications). The 
power constrained sensors and the disadvantaged users need to take advantage of other 
intermediate resources in battlefield environment that have the necessary capacity. 
 
2.3. Target Environment Characteristics 
 
The scenario described above is useful to characterize the target environment for agile 
computing. The computing resources in the environment vary over time along six dimensions: 
their architecture (CPU and operating system), their capabilities (processing, memory, storage, 
communications, and power), their ownership, their role, their location, and their current load. In 
addition, as their location within the environment change, the reachability of the resources may 
change over time. In terms of communications, the networks are wireless and ad-hoc, resulting in 
continuously changing reachability, bandwidth, and latency. The environment may be viewed as 
a system of systems, incorporating distributed sensor networks, teams of autonomous vehicles, 
groups of human operators (with associated resources), and high-capacity back-end computing 
systems. 
 
2.4. Agile Computing Middleware Goals 
 
2.4.1. Providing and Maintaining Communications Links: Systems within the environment need 
to communicate and exchange information for a variety of reasons. A sensor may need to be 
queried in order to obtain data. A robot may need to be driven by a human operator. A team 
member may need to retain connectivity with other members in order to be aware of their 
positions. A database may need to be queried to retrieve relevant information. The available 
communications resources need to be effectively allocated to competing demands based on 
policies. For example, an operator driving a robot may need to be provided a low-latency link 
with a limit on the minimum bandwidth available. Satisfying these requirements may require 
manipulation of the environment (for example, moving a robot to act as a communications 
relay). 
 
Resource manipulation may be integrated in two different modes. In the first approach, 
manipulation is invoked only when the resource requirements cannot be satisfied by the currently 
available resources in their current configuration. An example would be moving a 
communications relay into place when there is no existing link or the link does not provide the 
necessary characteristics. In the second approach, resource manipulation is more tightly 
integrated into resource allocation. Being able to manipulate the environment provides an extra 
degree of freedom beyond simply allocating among available resources. An example would be 
moving a communications relay even if there was a communication path already available, if 
moving the resource to a new location (at a cost) provides a larger savings in overall 
communication costs. 
 
2.4.2. Supporting Distributed Processing: Given the wide range of devices and capabilities in the 
target environment, computational power is not evenly distributed. Users working with small 
PDAs or tablet computers are limited in their processing capabilities and constrained by the 
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limited battery power. The middleware needs to support such disadvantaged users to exploit 
other computing resources in the environment. For example, a soldier on the ground may be 
using a tablet computer to run a data analysis algorithm. If a UAV or a HMMVW with a more 
powerful computer were to come into communications range with the soldier, the middleware 
should allow the tablet computer to offload the processing to the more powerful resource while 
the resource is available. If the resource were to go away before the processing is completed, the 
middleware should be able to migrate the computation onto another resource or back to the 
original tablet computer. 
 
One of the challenges that needs to be addressed by the middleware is the wide variety of 
resource types. The computing resources are expected to have different CPU architectures and 
different operating systems. Therefore, the middleware must be able to support migrating 
computations across different platforms. Moreover, this migration should be transparent to the 
computations themselves, which requires support for process migration and redirection of 
resources that the computations need to access. 
 
2.4.3. Embedding Processing Along the Data Path: Data dissemination is one common 
application in tactical military environments. Data may be gathered by human operators or by 
sensors that are distributed in the battlefield environment. Applications normally use a 
middleware publish-subscribe system to deliver data from the data producers to consumers. 
Capabilities such as data fusion, hierarchical data distribution, and policy enforcement require 
that the data be processed before delivering the data to consumers. For example, data fusion may 
require that two different sensors transmit data to a processing component that transforms the 
incoming data and produces a new data stream for one or more consumers. Policy enforcement 
may require that sensor data be transformed before being delivered to a consumer. Similarly, 
hierarchical data distribution may require that a process generate a subset of an existing data 
stream in order to service a new client request. In all three of these examples, processes need to 
operate upon the data produced before the data can be delivered to the consumers. 
 
In a tactical military environment, the data consumers and data producers may be underpowered 
resources. For example, small embedded sensor devices may not have much processing power or 
storage capabilities. Likewise, dismounted soldiers carrying PDAs or other small computers are 
constrained by the capabilities of their devices. The implication of the endpoints being weak 
resources is that any data processing must be accomplished on other intermediate resources in 
the environment. The agile computing middleware provides the underlying capabilities to 
opportunistically discover and task resources in the environment that can support the data 
processing requirements of the publish-subscribe system. 
 
3. Agile Computing Architecture 
 
This section presents the overall architecture for the agile computing middleware. This 
architecture is one instance of the agile computing model presented in the previous section. 
Fundamentally, the architecture supports the coordination, communication, distribution, and 
execution of processes on opportunistically discovered nodes. 
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The overall architecture for the agile computing middleware consists of a kernel component, a 
coordination component, a visualization component, and APIs for applications to interact with 
the middleware. Figure 2 shows a typical configuration with a number of services and clients. 

 
Figure 2: Overall Architecture for the Agile Computing Middleware 

 
Each node executes an instance of the Agile Computing Kernel (ACK). Nodes may be running 
client applications, services, or any combination. Client applications interact with the 
middleware using one of three APIs: Mockets, AgServe, and/or FlexFeed. 
 
In addition, the Coordinator and the Visualizaer are middleware components that work with the 
ACKs running on each node. The Coordinator, while shown in a single box, may be in fact 
realized using three different approaches: a centralized approached with a single coordinator, a 
zone-based approach with a centralized coordinator per zone (with the zones organized into a 
hierarchy), and a fully distributed approach, where coordination is performed by each kernel 
communicating with other kernels directly. These approaches are further discussed in section 2.2 
below. 
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The other two components shown in the dashed boxes, XLayer Infrastructure and KAoS 
Policy Infrastructure, are components used by the middleware but are separate frameworks. 
They are not a part of the agile computing middleware. 
 
3.1. Agile Computing Kernel 
 
The kernel contains a number of components that realize various functions of the middleware. 
Figure 3 shows the components that the kernel has in the normal configuration. These 
components are briefly described below. The more significant components are described in detail 
later. 
 
Agile Computing Kernel

Group Manager

Port
Network Access Layer

KAoS
Interface

Service to VM Container Mapper

Java VM ContainerAroma VM Container

Deploy 
Protocol 
Handler

Activate 
Protocol 
Handler

Invoke 
Protocol 
Handler

Deactivate 
Protocol 
Handler

Delete 
Protocol 
Handler

Node Monitor

Protocol Redirector
Port

Relocate 
Protocol 
Handler

Jikes RVM Container

Local 
Coordinator

Mocket Monitor

Figure 3: The Agile Computing Kernel 
 
Node Monitor: Monitors the resource utilization at the local node, including CPU, memory, 
storage, and network. 
 
Group Manager: Handles discovery of other nodes and grouping of nodes into different sets. 
Also handles propagation of resource information from the local kernel to other kernels and 
searching for nodes or services at other nodes. 
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Mocket Monitor: Monitors the status of mockets being used on the local node by clients or 
services, including open connections, failed connections, lost connections, and statistics about 
the connection. 
 
KAoS Interface: Connects with the KAoS Policy and Domain Services infrastructure to obtain 
policies that can be used to control the behavior of the kernel and other components (e.g., 
limiting the bandwidth utilized by a mocket connection). 
 
Local Coordinator: Handles coordination for resource allocation and service life-cycle 
management. It works in conjunction with other local coordinators or centralized or zone-based 
coordinators to perform resource allocation, service deployment, service invocation, and service 
migration decisions. The coordination mechanism is discussed further in section 2.2. 
 
Protocol Redirector: Handles incoming connections to the kernel from clients or from other 
kernels and directs the connection to the appropriate protocol handler. 
 
Protocol Handlers: Realize particular protocols that are used when performing functions such as 
deploying a new service, activating a service, invoking a service, and migrating a service, among 
others. 
 
VM Containers: Execute Java VMs which, in turn, execute services as part of the kernel. The 
internals of the VM Containers are discussed below. There are currently three variations – one 
for the Aroma VM, one for Sun’s Java VM, and one for the Jikes RVM. 
 
VM Container Mapper: Keeps track of the VM Container that is executing each service, which 
allows the protocol handlers to direct incoming requests to the right VM Container. 
 
3.2. Coordinator 
 
The coordinator is the logical entity that manages the overall behavior of the agile computing 
middleware. The coordinator monitors node and resource availability as well as network 
connectivity and bandwidth. Client requests are received by the coordinator, which handles 
allocation of resources. The coordinator also performs proactive manipulation of nodes, such as 
moving a node to act as a relay in order to restore a lost communications link. Coordination is a 
continuous process as the resource allocation needs to adapt to changes in the environment. 
 
The coordinator may be realized using either a centralized approach, a zone-based approach, or a 
fully distributed approach. Figures 4, 5, and 6 show the three different approaches. 
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Figure 4: Centralized Coordination Approach 

In the centralized approach, a single node behaves as the coordinator at any given point in time. 
This coordinator communicates with the local coordinator at each of the nodes. Requests from 
clients are sent to the coordinator, which in turn issues commands to the other nodes. If the 
coordinator (or the node) fails, then a new coordinator can be selected through an election 
process. 
 
Like any other centralized approach, the centralized coordinator is the simplest, but is not 
scalable and introduces a bottleneck as well as a single point of failure. 
 
In the zone-based coordination approach, nodes are grouped into zones, each of which has the 
equivalent of a centralized coordinator. Zones are typically created based on network proximity 
(which, in wireless environments, also implies physical proximity). One of the nodes in a zone is 
elected to be the zone coordinator. This zone coordinator interacts with all the other local 
coordinators within the zone (much like the centralized approach) and also with other zone 
coordinators. 
 
Two structural arrangements are possible with the zone-based approach – peer-to-peer and 
hierarchical. Figure 5 shows a fully connected peer-to-peer arrangement between the zones, 
although it is not necessary for all of the zone coordinators to be in direct communication with 
each other. 
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Figure 5: Zone-based Coordination Approach 

 
Figure 6: Distributed Coordination Approach 
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The last possibility is a fully distributed coordination approach, as shown in Figure 6. In this 
approach, there is no centralized or partially centralized coordinator at all. Each of the local 
coordinators directly communicates with other local coordinators as needed. Again, Figure 6 
shows a fully-connected arrangement, but that is not a requirement. The fully distributed 
coordination approach does not have a single point of failure but like most distributed 
algorithms, it is the most complicated approach. 
 
In addition to the three different approaches, a number of different coordination algorithms are 
possible, based on the context and the problem to which the agile computing middleware is 
applied. The first version of the coordinator has been designed for the FlexFeed framework – 
which applies the notion of agile computing for sensor information feeds. The FlexFeed 
coordinator uses the centralized approach and handles path optimization, efficient data 
distribution, and policy enforcement. FlexFeed has been used both in the context of the DARPA 
Control of Agent-based Systems (CoABS) and the U.S. Army Future Combat Systems (FCS) 
research programs. 
 
The overall goals and desired behavior of the coordinator can also be regulated via policies. 
Policies do not specify the coordination strategy, but rather runtime constraints on the strategy. 
For example, policies can be used to specify that only 50% of a node’s CPU should be used, or 
that a node with less than 1 hour of battery life should not be exploited. Policies are specified 
using the KAoS framework, which allow the administrators or maintainers of the system to 
dynamically change behavior at runtime. 
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4. Focused Research Areas 
 
4.1. AgServe – Dynamic Service Instantiation, Relocation, and Optimization 
 
AgServe is the service-oriented architecture that was built and integrated into the Agile 
Computing Middleware as part of this effort. 
 
We began by investigating existing web services architecture and technology. This survey was 
done prior to designing and implementing APIs for a service oriented architecture on agile 
computing. The goal was to examine current standards and available COTS and open source 
products to determine their adequacy and usability for agile computing. 
 
OASIS and the W3C are the primary committees responsible for the architecture and 
standardization of web services. Over the last few years, three primary technologies have 
emerged as worldwide standards that make up the core of today’s web services technology: 
Simple Object Access Protocol (SOAP), Web Service Description Language (WSDL), and 
Universal Description, Discovery and Integration (UDDI).  
 
SOAP provides a standard packaging structure for transporting XML documents over a variety 
of standard Internet technologies, including SMTP, HTTP, and FTP. By having a standard 
transport mechanism, heterogeneous clients and servers can become interoperable. 
 
WSDL is an XML technology that describes the interface of a web service in a standardized 
way. WSDL standardized how a web service represents the input and output parameters of an 
invocation externally, the function’s structure, the nature of the invocation (in only, in/out, etc.) 
and the service’s protocol binding. WSDL allows disparate clients to programmatically 
understand how to interact with a web service. 
 
UDDI provides a registry of web services for advertisement, discovery, and integration purposes. 
The web service information is published using this protocol. 
 
Among the different toolkits and APIs that facilitate the creation and deployment of web 
services, Apache Axis2 is the most promising one. Apache Axis2 is an open source, Java and 
XML based Web Services framework consisting of an implementation of the SOAP server and 
various utilities and API’s for generating and deploying Web service applications.  Besides the 
Java version, a C++ implementation is also available. When a Web service is deployed using 
Axis2, it will generate a WSDL file automatically that can be used to generate the Web service 
client stubs for different programming languages (e.g. Java, C#, etc.). 
 
Web services may suffer from poor performance compared to other distributed computing 
architectures such as RMI, CORBA, or DCOM. This is a common trade-off when choosing text-
based formats. XML explicitly does not count either conciseness of encoding or efficiency of 
parsing among its design goals. Binary representations such as SOAP MTOM promise to 
improve the wire efficiency of XML messaging.   
 



 
 

14

Based on our research, we have decided to implement the following approach for agile 
computing. 
 
We have considered two distinct models for synchronous service invocation. The first option 
involved the full specification of the service request and service response via SOAP messages to 
be exchanged between the client and the service. This alternative follows the conventional 
mechanism proposed for method invocation in web-services standards but has some drawbacks 
in tactical environments. 
 
The second model considered for synchronous service invocation was based on the remote 
procedure call mechanism provided as part of SUN’s Java™ language. The RMI-based method 
is highly efficient and compact (in terms of message complexity).   
 
In Java RMI, a client node can invoke a method at a server node (service) through a local 
service-stub that provides all exposed services methods. Request and response follow a 
proprietary format that includes all objects and arguments as serialized Java objects. Primitive 
types are converted to complex objects prior to serialization at the client side.  
 
The downside of an RMI-like strategy for tactical environments lies in the fact that the service 
request and response methods provide no intelligible information that could be exploited by the 
multi-hop nature of such networks.  
 
After considering both alternatives, we have opted for utilizing a hybrid approach for service 
invocation, utilizing a SOAP envelop with limited information about the contained RMI-like 
serialized request. The SOAP envelop will contain the name of the class, method and arguments 
(as well as primitive values) for the method. All complex objects associated with the request or 
response will be serialized and wrapped by nested elements also containing the associated class 
names. 
 
The proposed mix-approach for method invocation allows complex objects to be easily (and 
efficiently) exchanged between nodes and still provides some structure and basic information 
about the objects, methods and arguments involves, with can utilized by intermediate nodes in 
the network. 
 
The AgServe implementation, service migration, and experimental results are described in two 
papers included in the appendix: 

• Towards an Agile Computing Approach to Dynamic and Adaptive Service-Oriented 
Architectures 

• An Adaptive and Efficient Peer-to-Peer Service-oriented Architecture for MANET 
Environments with Agile Computing 

 
4.2. Group Manager – Dynamic Service Discovery 
 
The Group Manager is an application-level component that supports resource and service 
discovery. It enables the agile and opportunistic exploitation of resources by optimizing queries 
to find nodes in network proximity and/or nodes that are resource rich or have excess capacity. 
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The Group Manager supports proactive advertisement, reactive search, or a combination of the 
two. The search is realized using a Gnutella-like or probabilistic search mechanism. In addition, 
the radius (in terms of network hops) of the advertisement or search can be controlled on a per 
request basis, providing a powerful mechanism to control how strongly or weakly a service may 
be advertised and how far a search request may travel. In the simplest case, distance is defined as 
the number of hops in a MANET environment, but can be a more application relevant parameter 
such as bandwidth or latency. 
 
Propagation of the advertisement and search messages occurs via one of three mechanisms – 
UDP broadcast (the simplest case), UDP multicast, or via the XLayer Framework that provides 
bandwidth-efficient flooding. In addition, tunneling via TCP supports bridging multiple 
networks. In all of these four cases, each node may selectively rebroadcast an incoming message 
to provide control over the radius. 
 
These capabilities enable applications to make tradeoffs between discoverability, bandwidth, and 
latency. Proactive advertisement uses more bandwidth but reduces the latency when a client 
needs to find a service and vice-versa. On another dimension, a service that is widely present in a 
network does not need to advertise strongly (or, consequently, a client looking for such a service 
does not need to search widely) as opposed to services that are scarce. 
 
Groups may be used to partition network nodes into different sets thereby restricting 
advertisements and queries. The Group Manager provides support for two different group types: 
peer groups and managed groups. Peer groups are completely decentralized: they do not have an 
owner or manager, but instead maintain node membership independently from the perspective of 
each node. This design choice also implies that there is no attempt at maintaining a consistent 
group view for all nodes that are members of a peer group. In addition, no special mechanism is 
required in order to join a peer group. Nodes can simply query or register resources and services 
in the context of a specific peer group and will implicitly be treated by the Group Manager as 
members of the same peer group. 
 
The decentralized and dynamic nature of peer groups make them very well suited for resource 
and service sharing in MANET environments. However, for additional flexibility, the Group 
Manager also supports centralized resource and service management by means of managed 
groups. A managed group is created by a particular node and is owned by that node. Other nodes 
need to explicitly join a managed group by sending a membership request to the group owner 
node. 
 
Access to groups (of both peer and managed types) may optionally be restricted using a 
password, thereby preventing nodes that do not possess the necessary authorization credentials 
from joining a specific group. 
 
The Group Manager API has been designed to be extremely simple and generic, facilitating its 
use in a wide range of applications. For example, the ACI Kernel uses the Group Manager to 
propagate node resource information, the Service Manager uses it to publish services in XML 
and search for services using XPath queries, and FlexFeed uses the Group Manager to find data 
sources for subscribers. Versions of the Group Manager are available for both Java and C++, and 
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operating at the application layer facilitates easy, piecewise integration into existing applications. 
All of the above features combine together to make the Group Manager well suited to MANET 
environments. 
 
The Group Manager is further described in two papers included in the appendix: 

• Resource and Service Discovery in Wireless Ad-Hoc Networks with Agile Computing 
• An Adaptive and Efficient Peer-to-Peer Service-oriented Architecture for MANET 

Environments with Agile Computing 
 
4.3. Mockets – Proactive Service Link Maintenance 
 
Mockets (for “mobile sockets”) is a comprehensive communications library for applications. The 
design and implementation of Mockets was motivated by the needs of tactical military 
information networks, which are typically wireless and ad-hoc with low bandwidth, intermittent 
connectivity, and variable latency. The initial implementation of Mockets was completed for use 
by the Army Research Laboratory as part of the Warrior’s Edge initiative of the Horizontal 
Fusion Portfolio’s Quantum Leap demonstrations. 
 
Mockets addresses specific challenges including the need to operate on a mobile ad-hoc network 
(where TCP does not perform optimally), provides a mechanism to detect connection loss, 
allows applications to monitor network performance, provides flexible buffering, and supports 
policy-based control over application bandwidth utilization. 
 
Mockets has been designed to provide the following five capabilities: 
1) Application-level implementation of the communications library in order to provide 

flexibility, ease of distribution, and better integration between the application and the 
communications layer. 

2) A TCP-style reliable, stream-oriented service that is designed to operate on wireless ad-hoc 
networks thereby making it easy to port existing applications to the ad-hoc environment. 

3) A message-oriented service that provides enhanced capabilities such as message tagging and 
replacement, different classes of service (reliable/unreliable combined with sequenced/ 
unsequenced), and prioritization. 

4) Transparent mobility of communication endpoints from one host to another in order to 
support migration of live processes with active network connections. 

5) Interface to a policy management system in order to allow dynamic, external control over 
communications resources used by applications. 

 
The result is a flexible user-level communications library with implementations in Java, C++, 
and C#. The performance of Mockets is equal to or better than TCP for the type of networks that 
were targeted, while providing the additional desired capabilities. 
 
Mockets is further described in the following three papers included in the appendix: 

• Mockets: A Novel Message-Oriented Communications Middleware for the Wireless 
Internet 

• Network Conditions Monitoring in the Mockets Communications Framework 
• Session Mobility in the Mockets Communication Middleware 
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4.4. FlexFeed – Efficient Data Dissemination and Predicate Processing 
 
FlexFeed is a publish/subscribe communications framework for dynamic in-stream data 
processing in mobile ad-hoc network environments under policy and resource constraints. The 
framework uses mobile agents as data-aware processing elements to better customize multicast 
trees and allocate in-stream data processing capabilities in the network. In-stream data 
processing relies on taking advantage of the multi-hop nature of network paths in ad-hoc 
networks to appropriately allocate data processing elements for some optimization criteria. 
 
In the agile computing middleware, FlexFeed is the API that application utilize for publish-
subscribe oriented communications. In the context of data-aware publish-subscribe systems, it 
opportunistically allocates computational resources in the network while taking into 
consideration load, connectivity, and bandwidth availability in order to minimize overall costs 
for data processing and distribution of multiple concurrent data feeds. 
 
In order to provide decentralized mechanisms for high level policy definition, deconfliction and 
distribution, the FlexFeed framework has been integrated with KAoS policy services as its 
default framework but other approaches could be straightforwardly adapted. Upon policy 
distribution, the FlexFeed framework is responsible for providing on-demand deployment and 
activation of policy enforcers. 
 
In FlexFeed, policies can be used to regulate local (and global) resource utilization of concurrent 
data feeds, as well as to regulate the context-dependent release of information between nodes. 
FlexFeed supports the deployment of customized data filters at run-time that can be used as data-
aware policy enforcers for specialized data types. For example, details of images being 
transmitted by a particular camera sensor can be transparently downgraded for clients not 
authorized to access the full resolution video. 
 
Policies can also be used to regulate and constrain the autonomous behavior of the framework, 
providing bounds for self-adjustments to operation tempo and to the proactive manipulation of 
resources. For example, policies can specify the conditions under which resources can be used or 
moved in order to restore communication loss. 
 
While other aspects of policy management are performed by KAoS, the enforcement of policies 
is autonomously handled by FlexFeed. The framework will opportunistically allocate (and 
monitor) the necessary resources for policy enforcement. When resources available are 
insufficient for the policy requirements, the framework reports the issue to the policy 
infrastructure, requesting assistance. 
 
FlexFeed is further described in the following two papers included in the appendix: 

• A Mobile Agent-based Communications Middleware for Data Streaming in the 
Battlefield 

• Policy-based Bandwidth Management for Tactical Networks with the Agile Computing 
Middleware 
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5. Future Directions 
 
The agile computing middleware provides numerous capabilities that are well suited for tactical 
military environments. As the middleware is utilized in different contexts and for different 
experiments, new requirements are identified, both in terms of useful extensions to existing 
components and for entirely new components. Some of these are described below: 
 
5.1. Enhancements to Mockets 
 
5.1.1. Support for multiple, simultaneous network streams 
 
The Mockets communications library supports the notion of network mobility - where a node 
migrates from one network to another thereby changing the IP address that has been assigned to 
the node. If applications are using Mockets, the change is transparently handled by the Mocket 
endpoint. 
 
An enhancement to this capability would be to support multiple IP addresses (and multiple 
interfaces) transparently as they become available and unavailable. For example, consider a 
laptop that has a wireless interface that is active. If the throughput is insufficient, a user might 
decide to plug the laptop into the wired Ethernet network. However, existing applications that 
have open network connections would not switch to using the new link, thereby still 
experiencing limited throughput until connections are stopped and restarted. This capability 
would allow mockets to not only switch transparently to the Ethernet network, but to use both in 
parallel. The state estimation features in Mockets could be used to detect the quality of the 
network links and split the traffic accordingly (or as specified through an application-level or 
system-level policy). 
 
5.1.2. Adaptive congestion control 
 
Existing congestion control algorithms do not work well in wireless environments since they 
often conflate temporary wireless disconnection with network congestion. Mockets needs to be 
enhanced with new congestion control algorithms that are designed to work well in wireless 
networking environments. 
 
5.1.3. Reliable-until-replaced Semantics 
 
Mockets provides the notion of message replacement – where a new message can replace an 
outdated message in order to reduce the amount of network traffic. However, for any messages 
or fragments that have already been transmitted but not yet acknowledged, message replacement 
requires the generation of a control packet indicating that the previously transmitted messages 
have been cancelled. This allows the receiver to discard and not wait for any missing fragments 
in the prior messages. 
 
The reliable-until-replaced semantics provides a similar capability to message replacement, but 
without the overhead of the control packets to cancel messages. This approach would be more 
efficient, but would only work in situations where the application does not want to selectively 
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cancel individual packets. The new semantics are well suited for situations such as position 
updates, where a new update invalidates all previous updates. The original message replacement 
approach is still required to support situations where a new update only invalidates a subset of 
previous updates. 
 
5.2. Porting JBI to AgServe 
 
The AgServe service-oriented architecture has been designed and implemented as part of this 
effort to support dynamic SOAs that opportunistically exploit nodes to run services. The next 
step would be to port some of the JBI components and package them as services on top of 
AgServe and experiment with them to measure performance improvements in tactical 
environments. 
 
5.3. Peer-to-Peer Information Dissemination 
 
One of the new capabilities that has been identified as a requirement for the agile computing 
middleware is a peer-to-peer information dissemination service. The goal for this service is to 
integrate the notion of groups from the Group Manager and extend the point-to-point message 
transmission capability of Mockets to support point-to-multipoint dissemination of information. 
In addition, the dissemination service will support store and forward to handle network 
disconnections and partitioning. The dissemination service will also need to adapt its behavior to 
support multiple patterns of publishers and subscribers, including one-to-one, one-to-most, most-
to-most, most-to-one, one-to-few, few-to-few, few-to-one, few-to-most, and most-to-few. 
 
The dissemination service could provide a more robust and efficient means for dissemination in 
tactical environments and could be the foundation for a peer-to-peer version of JBI. 
 
5.4. Integrating Learning to Support Adaptation Over Time 
 
Several aspects of the behavior of the agile computing middleware and Mockets, Group 
Manager, FlexFeed, AgServe, (and the Dissemination Service) can benefit from dynamic 
adaptation to the environment. Such dynamic adaptation requires that the behavior of various 
aspects of the system be observed over time and that patterns be learned, so that future behavior 
and decisions can adapt accordingly. Such adaptation can apply at many levels – from 
determining whether a network link to a node will be stable to predicting the future 
communication or computational load on the system. 
 
5.5. Application to Other Domains 
 
Many of the capabilities of the agile computing middleware could also be applied to other 
domains, such as disaster recovery. Doing so would allow a significant investment in these 
technologies not only from the Air Force but also the Army and the Navy to be leveraged for 
other beneficial purposes. 
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List of Acronyms 
 
ACI – Agile Computing Infrastructure 
ACK – Agile Computing Kernel 
API – Application Programming Interface 
CoABS – Control of Agent-based Systems 
CORBA – Common Object Request Broker Architecture 
COTS – Commercial Off The Shelf 
CPU – Central Processing Unit 
DCOM – Distributed Component Object Model 
FCS – Future Combat Systems 
FTP – File Transfer Protocol 
MANET – Mobile AdHoc Network 
MTOM – Message Transmission Optimization Mechanism 
PDA – Personal Desktop Assistant 
GIS – Geographic Information System 
IP – Internet Protocol 
JBI – Joint Battlespace Infosphere 
JTRS – Joint Tactical Radio System 
HMMVW – High Mobility Multipurpose Wheeled Vehicle 
HTTP – HyperText Transfer Protocol 
RF – Radio Frequency 
RMI – Remote Method Invocation 
SMTP – Simple Mail Transfer Protocol 
SOA – Service Oriented Architecture 
SOAP – Simple Object Access Protocol 
TCP – Transmission Control Protocol 
UAV – Unmanned Aerial Vehicle 
UDDI – Universal Description, Discovery, and Integration 
UDP – User Datagram Protocol 
UGS – Unattended Ground Sensor 
UGV – Unmanned Ground Vehicle 
UUV – Unmanned Underwater Vehicle 
VM – Virtual Machine 
W3C – World Wide Web Consortium 
WSDL – Web Service Description Language 
XML – Extensible Markup Language 
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Appendix 
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that describe the results achieved by this project in greater detail. The following papers are 
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